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Abstract

Large-scale viscous dampers are frequently used in civil structures to mitigate seismic and wind-induced vibration. For

an effective condition assessment of nonlinear dampers, a probabilistic change detection methodology is proposed. The

results of experimental studies with different large-scale nonlinear viscous dampers are shown. Considering damper

experimental data with measurement uncertainty, the proposed data-driven methodology can be used to (1) detect small

changes of a nonlinear system, (2) interpret the physical meanings of system changes, and (3) quantify the uncertainty of

the detected changes without a priori knowledge of the system’s characteristics.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Large-scale orifice viscous dampers are frequently used in modern civil structures to mitigate seismic or
wind-induced vibration. Among various types of dampers, orifice viscous dampers (hereinafter viscous
dampers) provide excellent efficiency of energy dissipation—the orifice damper employs small orifices on its
piston head, so that the silicon fluid sealed inside the damper chamber is forced to pass through the orifices
when the damper piston reciprocates. Consequently, the dynamic properties of an orifice viscous damper
largely depend on the geometric characteristics of the orifice design. Soong and Constantinou [1] and Soong
and Dargush [2] provide detailed descriptions of orifice viscous dampers.

Due to their importance in applications involving civil structures, many government agencies require a
series of quality assurance tests for large-scale dampers before the dampers are installed in actual civil
structures [3–6]. After installation, the condition assessment of the installed dampers is commonly performed
in two ways: visual inspection and monitoring the internal pressure of the damper’s silicon fluid. First, visual
inspection is usually conducted by trained inspectors, searching for noticeable damage on the damper surface,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Table 1

A comparison of investigated system identification methods for applications in structural health monitoring.

Identification methods Advantages Disadvantages

Simplified damper design

model (parametric)

Most accurate if the exact system model is known A priori knowledge of the system is required

Direct physical interpretation is possible using the

identified parameters

The identified parameters become

significantly biased when the initial model is

incorrect

Restoring Force Method

(non-parametric)

No a priori knowledge of the system is required The identification yields an approximating

model

The same model can be used when the system changes

into different nonlinear classes

Only limited physical interpretation of

identification results is possible

It is applicable to a wide range of nonlinearities

Both Chebyshev and power-series coefficients can be

identified

Physical interpretation of some of the identification

results is possible with identified coefficients

Artificial neural networks

(non-parametric)

No a priori knowledge of the system is required Change detection is possible, but physical

interpretation of the detected changes are not

generally possible

It is applicable to a wide range of nonlinearities

Change detection of the system is possible through

monitoring the regression error of the trained networks
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often evident by fluid leakage. The second method employs a pressure gauge to measure the internal pressure
levels of the dampers. Thus, with a pressure change, the inspectors can presume that the damper has changed
during the operation. If the pressure change were significant, the damper would be removed from the structure
and delivered to testing facilities to find possible causes of the change. However, none of the current practices
are adequate for reliable condition assessment. The visual inspection is often subjective. Although the pressure
monitoring is obviously a more advanced method than visual inspection, the direct relationships between the
pressure level and engineering characteristics of the nonlinear dampers are difficult to identify. Moreover, no
current practices of damper monitoring are appropriate when a number of dampers are employed in a
structure. For example, after a major seismic retrofit of the west span of the San Francisco Oakland Bay
Bridge in 2004, more than 100 large-scale viscous dampers are employed. In this case, more systematic and
efficient condition assessment methodologies are required.

As an alternative approach for damper condition assessment, a vibration-based structural health
monitoring technique is proposed in this study. Yun et al. [7] and Yun and Masri [8] demonstrated
that the non-parametric Restoring Force Method is a very promising tool for the condition assessment
of large-scale nonlinear viscous dampers. Comparing one parametric (the simplified damper design model)
and two non-parametric identification methods (the Restoring Force Method and artificial neural
networks), they demonstrated that the Restoring Force Method has significant advantages than other
methods because (1) no a priori knowledge of the system is needed, (2) the same non-parametric model is
applicable to a wide range of nonlinearities, and (3) the physical interpretation of the identification results is
possible, which is generally impossible with other non-parametric identification methods, such as artificial
neural networks. A comparison of three identification methods for structural health monitoring applications is
shown in Table 1.

Recent progress in sensing and Internet-based data communication technologies allow the development
of real-time remote monitoring systems for civil infrastructure system. Yun et al. [9] have developed a
reliable real-time web-based continuous bridge monitoring system that has been applied to a critical
bridge (the Vincent Thomas Bridge) in the Los Angeles, California, metropolitan region to perform
forensic studies of various earthquakes, as well as a recent ship–bridge collision. Therefore, by combi-
ning the technology of a web-based monitoring system with the Restoring Force Method, a feasible
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methodology can be developed for a real-time remote condition assessment of large-scale nonlinear viscous
dampers.

In the development of the monitoring system, the following practical and challenging problems must be
considered: First, the effects of measurement noise on the results of change detection must be considered, since
sensor readings can be more significantly affected by noise in the in situ measurements than in laboratory
testing, due to various sources of noise. In many cases of in situ monitoring, only the displacement or
acceleration is measured, depending on the measurement feasibility, and then other necessary response
states are numerically obtained through digital signal processing techniques using the measured response. In
such cases, the effects of measurement noise are not simply additive, and propagate throughout the response
states, which are numerically obtained from noisy measurements. Consequently, the developed methodology
should be able to deal with those complicated noise effects. Second, the results of the change detection will be
affected by the measurement uncertainty. Therefore, the uncertainty of the detected change due to the
measurement noise must be quantified for reliable condition assessment. However, the uncertainty
quantification requires multiple tests, which is not usually possible for the in situ monitoring due to lack of
control of excitation sources. Even if one had the control of the excitation, performing multiple tests with full-
scale viscous dampers is extremely difficult because of an enormous amount of heat converted from the
dissipated energy.

Having the proposed condition assessment methodology will provide contributions in the following three
ways:
1.
 Enabling the interpretation of physical significance of detected changes, one can quantify the significance of
the changes at the full-structure level as well as at the component level. This attribute remains even when
the dampers’ evolving properties change into different classes of nonlinearity, due to various types of
deterioration.
2.
 With more reliable condition assessment methodologies, one can minimize unnecessary removal of
undamaged dampers. Damper removal from civil structures is time-consuming and expensive due to their
large physical size.
3.
 Since the methodology proposed in this study is data-driven and model independent, the same approach is
applicable to other types of nonlinear components, such as different types of energy dissipating devices,
base isolators, and nonlinear joints.

1.2. Objective

The objective of this study is to develop a data-driven methodology for change detection in large-scale
nonlinear viscous dampers. A joint study was performed between the University of Southern California, the
University of California at San Diego and the University of California at Berkeley. Three different large-scale
nonlinear viscous dampers were tested at the University of California at Berkeley and the University of
California at San Diego. The damper experiments were designed to introduce different types of nonlinearity in
a systematic way. Three large-scale viscous dampers used in the experimental study involved different
nonlinear features. In the experiments, two different excitation types were tested, including monotonic
sinusoidal and broadband random excitations.

Using the experimental results, an analytical study was performed at the University of Southern California.
A data-driven change detection methodology for the tested large-scale dampers was investigated using
the non-parametric Restoring Force Method. In order to study the effects of measurement uncertainty, the
damper data were intentionally polluted with random noise. As a statistical data recycling technique, the
Bootstrap method was investigated for uncertainty quantification, even with insufficient data for meaningful
statistical inferences. Using the developed change detection methodology, the aim was to achieve the
following:
1.
 ability to detect even small (genuine) changes in the nonlinear dampers;

2.
 ability to interpret the physical meaning of detected changes; and

3.
 ability to quantify the uncertainty associated with the detected changes.
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1.3. Scope
This paper is organized as follows: the experimental studies using three large-scale nonlinear dampers are
discussed in Section 2; the data-driven identification approach using the Restoring Force Method is discussed
in Section 3; the uncertainty estimation and statistical change detection of the large-scale viscous dampers are
discussed in Section 4; and the Bootstrap method as a data recycling technique and its uncertainty estimation
are discussed in Section 5.

2. Experimental studies

2.1. Test apparatus

Three different large-scale nonlinear viscous dampers were tested at two different test facilities: the 66.7 kN
(15 kip) viscous damper was tested at the Earthquake Engineering Research Center (EERC) of the University
of California, Berkeley (Fig. 1(a)), and the 2001.6 kN (450 kip) and 2891.3 kN (650 kip) viscous dampers
were tested at the Seismic Response Modification Device (SRMD) facility of the University of California,
San Diego (Fig. 1(b)).

The 66.7 kN damper with the maximum velocity of 431.8mm/s (Damper A) has the smallest size among the
tested dampers in this study. The damper was designed using a simplified Maxwell model [10–14] as

rðx; _xÞ ¼ C sgnð _xÞj _xjn, (1)

where r is the restoring force, C is the damping constant, and n is the nonlinear damping exponent. This
simplified design model is valid when the excitation frequency is low. In this case, the inertia term of the
damper response becomes insignificant, and consequently, f ðtÞ � rðx; _xÞ, where f is the measured force. Yun
et al. [7] demonstrated that the inertia term of the large-scale damper response would be negligible at a low
velocity. The design parameters of Damper A are C ¼ 1:12 kN sn=cmn and n ¼ 1:0, which makes the damper
response approximately linear. The 2001.6 kN damper at the maximum velocity of 215.9 cm/s (Damper B) was
designed with the parameters C ¼ 199:95 kN sn=cmn and n ¼ 0:3. The 2891.3 kN damper at the maximum
velocity of 40.6 cm/s (Damper C) was designed with C ¼ 957:44 kN sn=cmn and n ¼ 0:3. Hence, the restoring
force of Dampers B and C will be ‘‘softening’’ with no1:0.

2.2. Test protocols and preliminary data processing

2.2.1. Test with Damper A

Damper A was subjected to broadband random excitation with a lowpass cutoff frequency of 5.0Hz.
During the experiment, the acceleration ( €x) and force (f) of the damper were measured with a sampling
Fig. 1. Test facilities for large-scale viscous dampers at the University of California, Berkeley (UCB), and the University of California, San

Diego (UCSD) used in this study. (a) Test at the University of California, Berkeley. (b) Test at the University of California, San Diego.
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frequency of 1 kHz. The measured force of Damper A under broadband random excitation is shown in
Fig. 2(a). Once €x and f were measured, preliminary data processing was performed to obtain the displacement
(x) and velocity ( _x) required for the damper identification. The data processing was performed in accordance
with the following procedures:
1.
Fig

(a)
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The measured €x and f were de-trended and zero-phase filtered with the cutoff frequencies of 0.1–10.0Hz,
and a cosine-tapered window was applied to the time histories of €x and r.
2.
 The filtered €x was integrated to obtain the corresponding velocity _x. The same filter and time-history
window were applied to _x.
3.
 The processed _x was numerically integrated to obtain the corresponding displacement x. The same filter
and time-history window were also applied to x.

The test protocols, preliminary data processing and phase plots of the resulting Damper A response are
summarized in Table 2.
2.2.2. Test with Dampers B and C

Dampers B and C were subjected to monotonic sinusoidal excitation with an excitation frequency of 0.2Hz
for both dampers. Unlike Damper A, x and f (but not the €x) were measured during the experiments. The
sampling frequency of the measurement was 100Hz. Fig. 2(b) and (c) show the measured force of Dampers B
and C, respectively. In the figures, notice that the force amplitude of Damper B is constant, while that of
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. 2. Time histories of the measured forces for different large-scale nonlinear viscous dampers with displacement-controlled excitations.

The force of Damper A was measured under broadband random excitation. Damper A was a time-invariant system whose

racteristic was close to linear. (b) The force of Damper B was measured under monotonic sinusoidal excitation with a constant

quency of 0.2Hz and constant peak amplitudes of �50:8mm. The measured time history shows that Damper B is a time-invariant

tem. The damping response of Damper B was hysteretic with damping ‘‘softening’’. (c) The force of Damper C was measured under

notonic sinusoidal excitation with a constant frequency of 0.2Hz and constant peak amplitudes of �25:4mm. Damper C was a time-

ying system, since the measured force decreases with the constant monotonic sinusoidal excitation, while Dampers A and B are time-

ariant systems. Similar to Damper B, the damping response of Damper C was hysteretic with damping ‘‘softening’’.
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Table 2

Summary of test protocols and preliminary data processing parameters for the three large-scale nonlinear viscous dampers used in this

study.

Parameters Damper A Damper B Damper C

Nominal output force 66.7 (15) 2001.6 (450) 2891.3 (650)

kN (kips)

Max. velocity rating 43.2 (17) 215.9 (85) 40.6 (16)

cm/s (ips)

Designed parameters C ¼ 1:12, n ¼ 1:0 C ¼ 398:93, n ¼ 0:3 C ¼ 957:44, n ¼ 0:3
for damping, kN (s/cm)n

Excitation type Broadband random Monotonic sinusoidal Monotonic sinusoidal

Excitation frequency (Hz) p5:0 0.2 0.2

Nonlinearity Close to linear Polynomial, hysteretic Polynomial, hysteretic

Time-invariancy Time-invariant Time-invariant Time-varying

Measured response €x, f x, f x, f

Performed Integration for _x Differentiation for _x Differentiation for _x
data processing Double integration for x

Stiffness response

Damping response
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Damper C decreases. Both dampers were subjected to the sinusoidal excitation with a constant frequency and
constant peak amplitudes over time.

Once x and f are measured for Dampers B and C, preliminary data processing was performed to obtain the
velocity ( _x) using the following procedures:
1.
 The measured x and f were de-trended and zero-phase filtered with the cutoff frequencies of 0.05–5.0Hz.
Then, a cosine-tapered window was applied to the time histories of the filtered response, x and f.
2.
 The displacement x was differentiated to obtain the corresponding _x. The same filter and time-history
window were applied to the obtained _x.

The test protocols, preliminary data processing and phase plots of Dampers B and C are summarized in Table 2.

3. Non-parametric identification

3.1. Overview of Restoring Force Method

The Restoring Force Method is a non-parametric identification method for nonlinear systems, using a series
expansion of two-dimensional Chebyshev polynomials [15]. Using the Restoring Force Method, the restoring
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force of a single-degree-of-freedom (sdof) nonlinear dynamic system can be modeled as

rðx; _xÞ ¼
XP

i¼0

XQ

j¼0

C̄ijTiðx̄ÞTjð _̄xÞ, (2)

where rðx; _xÞ is the restoring force of the nonlinear dynamic system, C̄ij is the normalized Chebyshev
coefficient, Tið�Þ is the ith-order Chebyshev polynomial, P and Q are the highest orders of the Chebyshev
polynomial of the normalized displacement (x̄) and velocity ( _̄x), respectively, within the range of ½�1; 1�.

Once the C̄ij are identified, the C̄ij can be converted into the equivalent power-series coefficients using the
following relationship [16]:

T0ðyÞ ¼ 1; T1ðyÞ ¼ y; T2ðyÞ ¼ 2y2 � 1; . . . ; Tkþ1ðyÞ ¼ 2yTkðyÞ � Tk�1ðyÞ; . . . . (3)

The converted power-series coefficients are called the normalized power-series coefficients (āij). With the de-
normalization of x̄ and _̄x, the de-normalized power-series coefficients (aij) can be obtained. Using these
coefficients, Eq. (2) can be also expressed as

rðx; _xÞ ¼
XP

i¼0

XQ

j¼0

C̄ijT iðx̄ÞTjð _̄xÞ ¼
XP

i¼0

XQ

j¼0

āij x̄
i _̄x

j
¼
XP

i¼0

XQ

j¼0

aijx
i _xj. (4)

Accurate force measurement is critical for successful RFM applications. With the installation of load cells at
the ends of sdof viscous dampers, it can be conducted relatively easily to measure the force time histories.
Since there are various types of load cells available with long-term stability and robustness, reliable force
measurements is relatively easy to achieve.

3.2. Identification of nonlinear viscous dampers

It was known that the force characteristics for Dampers A and B do not change over time under stationary
displacement-controlled excitation. For example, as shown in Fig. 2(b), the measured force of Damper B is
stationary over time under the stationary sinusoidal excitation with a constant frequency of 0.2Hz and
constant peak amplitudes of �50:8mm. Consequently, since the outputs (i.e., measured force) of Dampers A
and B do not depend explicitly on time, the dampers are time-invariant systems under stationary excitation. On
the other hand, as shown in Fig. 2(c), the measured force of Damper C decreases over time although the
sinusoidal excitation has a constant frequency of 0.2Hz and constant peak amplitudes of �25:4mm. Hence,
Damper C is a time-varying system since the output of Damper C depends on time under stationary excitation.
For these two classes of nonlinear systems (time-invariant and time-varying), different procedures were
applied in the damper identification. Detailed identification procedures for each class are described below.

3.2.1. Identification results of time-invariant systems

Using the time-invariant systems of Dampers A and B, the Restoring Force Method identification was
applied for the entire domain of the measured time histories. In both cases, the order of the series expansion
was five. The identification results for Dampers A and B are shown in Fig. 3. The quality of the Restoring
Force Method identification was measured with the normalized mean-square errors (NMSE) as

NMSE ¼
1

ns2f

Xn

i¼1

ðf i � f̂ iÞ
2, (5)

where n is the number of data points, f is the measured force, f̂ is the identified force, and sf is the standard
deviation of the measured force [17]. Considering Damper A, excellent identification results were obtained
with the NMSE of 0.82% as illustrated in Fig. 3(a). For Damper B, ‘‘softening’’ hysteresis were successfully
identified (Fig. 3(b)). However, the identification failed to accurately model the nonlinearity near the damper’s
neutral position (i.e., x � 0 and _x � 0). The NMSE for the Damper B identification was 3.0%.

The identified Restoring Force Method coefficients for Dampers A and B are summarized in Table 3. For
the normalized Chebyshev coefficients (C̄ij), the first-order damping coefficient (C̄01) is dominant for both
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Fig. 3. The identification results for Dampers A and B using the Restoring Force Method.
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Dampers A and B: 27.99 for Damper A and 257.00 for Damper B. Notice that Damper B is designed for a
larger damping capacity than Damper A (refer Table 2). The third-order damping coefficient of Damper B
(C̄03 ¼ �13:17) is negative because the designed damping exponent is less than one (n ¼ 0:3), while the C̄03 of
Damper A is close to zero (C̄03 ¼ 0:30) because Damper A was designed for n ¼ 1:0 (Eq. (1)). The stiffness-
related coefficients (C̄10 for the linear stiffness and C̄30 for the cubic stiffness) are relatively small compared to
the damping coefficient (C̄01) for both dampers, which indicates that the contribution of the stiffness terms is
less significant in the identification than the damping terms (i.e., C̄01 and C̄03). These results are reasonable for
viscous dampers.

The identified power-series coefficients (āij and aij) also show the damper nonlinearity without a priori

knowledge of the dampers. For Damper A, the cubic damping coefficient (ā03 ¼ 4:21) is ignorable, compared
to the linear damping (ā01 ¼ 25:82). This result indicates that the damping characteristic of Damper A is
closed to linear rather than ‘‘softening’’. On the other hand, the significance of the cubic damping coefficient
(ā03 ¼ 148:20) with respect to the linear damping coefficient (ā01 ¼ 203:10) becomes larger for Damper B.
However, since the ā03 is still smaller than the ā01, the force of Damper B is ‘‘softening’’. The identified
Restoring Force Method coefficients for Dampers A and B are summarized in Table 3.

3.2.2. Identification results of time-varying system

In order to identify a time-varying nonlinear system of Damper C, the time histories of the damper data (i.e.,
x, _x and f) were partitioned into eight windows as illustrated in Fig. 4. The time-history partition was designed
to have 10 cycles per window.

Then, the Restoring Force Method identification was performed for each time-history window. Damper C
was accurately identified, and the mean and standard deviation of the NMSE for the eight windows were
0.50% and 0.09%, respectively. The identified normalized Chebyshev coefficients and normalized power-series
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Table 3

Summary of the identified coefficients using the Restoring Force Method.

Coefficients Damper A Damper B Damper C

(Parsed domain) (Entire domain)

Mean Stdv Max Min

^̄C10
1.24E�2 40.27 37.59 21.01 55.79 �1.48 51.27

^̄C01
27.99 257.00 516.48 64.64 625.80 436.66 526.6

^̄C30
0.63 2.80 3.75 2.06 7.04 0.98 10.90

^̄C03
0.30 �13.17 �26.70 3.47 �21.67 �30.63 �52.09

^̄a10 �1.41 66.32 31.02 56.63 100.30 �59.67 72.60

^̄a01 25.82 203.10 430.40 41.33 490.90 373.30 507.9

^̄a30 �0.55 10.33 101.20 48.11 155.90 38.70 17.38

^̄a03 4.21 148.20 244.66 115.71 387.80 89.29 117.0

â10 �0.19 1.33 1.33 2.37 4.18 �2.47 3.02

â01 0.27 3.12 13.17 1.24 14.92 11.38 15.37

â30 2.11E�5 7.38E�5 7.08E�3 3.38E�3 1.08E�2 2.90E�3 1.37E�3

â03 3.68E�6 5.34E�4 6.94E�3 3.37E�3 1.08E�2 2.35E�3 3.04E�3

NMSE (%) 0.82 5.03 0.50 0.09 0.66 0.39 1.92
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Fig. 4. Partitioning the time history of the measured force of Damper C for the Restoring Force Method identification.
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coefficients for the eight windows are illustrated in Fig. 5. For the normalized Chebyshev coefficients (C̄ij), the
linear damping (C̄01) is dominant with the mean value of 516.48, while the cubic stiffness (C̄30) is negligible
with the mean value of 3.75. The linear damping coefficient (C̄01) decreases as the measured force
decreases (Fig. 5(b)), while the linear stiffness (C̄10) remains constant (Fig. 5(a)). The cubic damping
coefficient (C̄03) decreases as the damper reciprocates. For the normalized power-series coefficients (āij), the
first-order damping (ā01) and third-order damping (ā03) decrease (Fig. 5(f) and (h)), while the first-order
stiffness (ā10) and third-order stiffness remain constant (Fig. 5(e) and (g)). These results indicate that the
degrading force of Damper C is due to the change of damping characteristics rather than stiffness
characteristics over time.

The identified Restoring Force Method coefficients for Damper C are summarized in Table 3. In the
table, the mean, standard deviation, maximum and minimum values of the Restoring Force Method
coefficients identified for the eight identification windows in Fig. 4 are shown. For a comparison
purpose, Damper C was also identified using the entire domain of measured time histories, and the
corresponding identified Restoring Force Method coefficients for the entire time domain are also shown in the
last column of Table 3. The table shows that the dominant coefficients for the entire time-history data are
within the range of the minimum and maximum for the partitioned time-history data (e.g.,
�1:48p51:27p55:79 for the C̄10 and 436:66p526:60p625:80). The NMSE of the former is also about 3.5
times greater than the latter. The measured and identified forces using the entire time domain are compared in
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Fig. 6. The figure illustrates that the identified force estimates the average of the degrading measured force
over time.

3.2.3. Findings from the identification results

Based on above results, several important conclusions can be drawn. First, two different types of nonlinear
dampers were accurately identified without using a priori knowledge about the identified dampers. This is
because the identification procedures of the Restoring Force Method are data-driven and model-independent.
Although no a priori knowledge was used in the identification, the identified Chebyshev and power-series
coefficients still contain the information concerning the dominant physical characteristics of the identified
dampers. Consequently, in the development of the change detection methodology, these coefficients can be
used as ‘‘change indicators’’ (or ‘‘features’’ in pattern recognition sense). Moreover, knowing which
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coefficients the changes were observed in, one can interpret the physical meanings of the detected changes.
Hence, guidelines to deal with the detected changes can be established for field applications. An excellent
example can be found in the identification results of Damper C. Again, without a priori knowledge of the
time-varying damper, the identified coefficients show that the decreasing measured force is due to degradation
of the damping efficiency (decreasing damping coefficients) in time rather than the changes of damper stiffness
(constant stiffness coefficients).

Notice that although the identified normalized Chebyshev coefficients (C̄ij) are related to the dampers’
stiffness or damping characteristics, they are not exactly equivalent to the actual spring or damping constants
of the dampers. For physical interpretation purposes, the normalized power-series coefficients (āij) and de-
normalized power-series coefficients (aij) can be used as more convenient indices. However, the C̄ij have many
advantages over āij and aij , because of the orthogonal property of the Chebyshev polynomials. The orthogonal
property of C̄ij can reduce the complexity of the uncertainty quantification of change detection with noisy
measurements. Detailed discussion of this issue is provided in Section 4.3.

4. Uncertainty estimation of damper identification

4.1. Data generation of noisy response

In order to study the effects of measurement noise on the damper identification, the sensor measurements of
Dampers A–C were polluted with 5% additive zero-mean Gaussian noise with respect to the root-mean-
square (rms) of the measurement states: the acceleration ( €x) and force (f) for Damper A, and the displace-
ment (x) and force (f) for Dampers B and C. Once the measurement states were polluted, the necessary
damper response for the Restoring Force Method identification was obtained numerically with the noisy
measurements: x and _x for Damper A, and _x for Dampers B and C. Hence, the uncertainty of the
noisy measurements propagated throughout the numerically obtained response. The detailed data
processing procedures were the same as those described in Section 2.2. A total of 3000 noisy data
sets were generated for all tested dampers. Sample time histories of noisy data sets for Damper B are shown in
Fig. 7.

4.2. Damper identification with noisy response

Once the 3000 noisy data sets were obtained for each damper, the Restoring Force Method identification
was performed, and the corresponding Chebyshev coefficients (C̄ij) and power-series coefficients (āij and aij)
were identified. The NMSE of the Restoring Force Method identification was relatively low for all tested
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Fig. 7. Sample time histories of noisy response of Damper B. (a) and (b) The measured displacement and force polluted with 5% zero-

mean additive Gaussian random noise. (c) The velocity obtained through the numerical differentiation of the polluted displacement using

the data processing procedures discussed in Section 2.2. Consequently, the effects of noise in the obtained velocity is more complicated

than the simple additive Gaussian noise in the noisy displacement and force.
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dampers: the mean and standard deviation of the NMSE for Damper A were 1.33% and 0.79%, respectively;
those for Damper B were 3.91% and 2.54%, respectively; and those for Damper C were 4.59% and 2.98%,
respectively.

For the linear damping (C̄01), which was the dominant term in the identification, the mean of C̄01 for
Damper A was 16.84, which was 61.16% compared to the identified C̄01 of 27.99 using the ‘‘clean’’ data set,
while the means of C̄01 for Dampers B and C were 278.06 and 562.48, respectively, which were 108.19% and
108.91%, compared to the identified C̄01 of 257.00 and 516.48, respectively, using the ‘‘clean’’ data set. Hence,
the discrepancy between the identified C̄01 for ‘‘clean’’ and ‘‘noisy’’ data was larger with Damper A than with
Dampers B and C.

The statistics of identified coefficients for Dampers A–C using the Restoring Force Method are summarized
in Table 4. The table shows that the coefficients of variance (cv) of C̄01 and the cubic damping (C̄03) for
Dampers B and C are almost identical: the cv of C̄01 for Dampers B and C were 0.03 and 0.03, respectively,
and the cv of C̄03 were �0:15 and �0:18, respectively. This result is expected since the ‘‘softening’’
characteristics of Dampers B and C are similar with the same designed damping exponent (n ¼ 0:3). On the
other hand, Damper A has a different cv (cv of C̄03 ¼ �5:00) because the designed damping exponent for
Damper A was n ¼ 1:0. Hence, physical interpretation using the identified coefficient was still valid even with
the noisy measurements.

The uncertainty levels of the identified Chebyshev and power-series coefficients are not necessarily
linear with the levels of measurement uncertainty. For example, as shown in Table 4, the standard deviation
of C̄01 for Damper B is 14.26 with 5% rms of zero-mean Gaussian noise in the displacement and force,
and the velocity obtained with the numerical differentiation of the noisy displacement. If the rms
noise level increases to 10%, the standard deviation of C̄01 is expected to increase, but not necessarily become
28.52 (i.e., double of the original value). The relationship between the measurements noise level and
Table 4

Statistics of the identified Restoring Force Method coefficients for the multiple tests and 3000 noisy data sets.

Type Damper A Damper B Damper Ca

Mean Stdv cv Mean Stdv cv Mean Stdv cv

(a) Normalized Chebyshev coefficients ( ^̄Cij)

^̄C10
0.67 0.19 0.28 26.23 14.26 0.54 55.19 32.17 0.58

^̄C01
16.84 0.16 0.01 278.06 8.60 0.03 562.48 17.17 0.03

^̄C30
0.14 0.14 1.00 �6.05 14.09 �2.33 �6.17 28.40 �4.60

^̄C03
�0.02 0.10 �5.00 �62.46 9.14 �0.15 �112.19 20.71 �0.18

(b) Normalized power-series coefficients ( ^̄aij)

^̄a10 1.55 0.69 0.45 110.49 115.28 1.04 286.46 245.46 0.86

^̄a01 18.23 0.74 0.04 642.43 86.03 0.13 1093.50 198.68 0.18

^̄a30 �1.20 2.32 �1.93 �190.07 360.35 �1.90 �473.24 786.05 �1.66

^̄a03 �2.63 2.26 �0.86 �747.97 322.88 �0.43 �982.85 669.23 �0.68

(c) De-normalized power-series coefficients (âij)

â10 1.42E�1 6.27E�2 0.44 2.00 2.09 1.05 10.98 7.85 0.71

â01 1.17E�1 5.56E�3 0.05 7.25 0.90 0.12 26.25 3.63 0.14

â30 �6.04E�4 2.36E�3 �3.91 �1.10E�3 2.12E�3 �1.93 �2.56E�2 4.24E�2 �1.66

â03 �8.17E�7 6.69E�7 �0.82 �1.05E�3 4.35E�4 �0.41 �1.31E�2 8.32E�3 �0.64

(d) Normalized root-mean-square of identification errors

NMSE 1.33E�2 7.90E�3 0.59 3.91E�2 2.54E�2 0.65 4.59E�2 2.98E�2 0.65

The mean, standard deviation and coefficient of variation are shown. In this table, only significant coefficients are shown, including the

linear stiffness (C̄10, ā10, a10), linear damping (C̄01, ā01, a01), cubic stiffness (C̄30, ā30, a30), and cubic damping (C̄03, ā03, a03).
aThe coefficients of Damper C are the averaged values for eight time-history windows shown in Fig. 4.
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uncertainty levels of the identified coefficients is a complex nonlinear function, affected by the type of dynamic
systems, stochastic characteristics of measurements uncertainty, and orthogonality of the identified
coefficients.

4.3. Statistical change detection of time-varying damper

4.3.1. Statistical independence of the Restoring Force Method coefficients

In Section 3.2, it was shown that the identified Restoring Force Method coefficients can be used as excellent
‘‘change indicators’’. A question is left: among three kinds of Restoring Force Method coefficients, which one
is most useful for change detection in a probabilistic sense. The advantage of using the de-normalized power-
series coefficients (aij) is that direct physical interpretation is possible because the aij preserves the physical
units (e.g., the unit of a10 for Damper B is kN=mm, that is the same as the linear spring constant). The
advantage of using the normalized power-series coefficients (āij) is that although the direct physical
interpretation is not convenient due to using the normalized displacement (x̄) and velocity ( _̄x), āij measures the
relative contribution of each power-series term to the identified restoring force. However, when measurement
uncertainty exists, the identified aij and āij are not statistically independent because the basis functions of the
power-series expansion (i.e., xi _xj and x̄i _̄x

j
) are not orthogonal. Consequently, for the uncertainty

quantification of the system changes, the testing dimension of the statistical Hypothesis Test becomes too
high because the aij and āij are multivariate coefficients. For example, in this study, there are 36 identified
coefficients with the highest series order of five for the displacement and velocity. For aij and āij, because each
of the coefficients are not statistically independent, the Hypothesis Test should be performed with the testing
dimension of 36 (maximum). In Fig. 8(a), the scatter plot between the first-order damping (ā01) and linear
stiffness (ā10) shows no significant statistical correlation. However, a strong correlation is observed between
the linear damping (ā01) and cubic damping (ā03).

On the other hand, the normalized Chebyshev coefficients (C̄ij) preserves the statistical independence

because the basis function of Chebyshev polynomials are orthonormal [16]. In Fig. 8(b), both scatter plots
illustrate that no significant statistical correlations are observed between the identified Chebyshev coefficients.
With the statistical independence property, the testing dimension of the Hypothesis Test dramatically reduces
to one. That is, the Hypothesis Test can be performed for each individual Chebyshev coefficient to detect
possible system changes. Hence, the normalized Chebyshev coefficients were used in the statistical change
detection in this study.

4.4. Statistical change detection using identified coefficients

Using the 3000 sets of the identified, normalized Chebyshev coefficients (C̄ij), the distributions of the
identified C̄ij were obtained. The histograms of the identified first-order damping coefficient (C̄01), the
dominant coefficient in the Damper C identification, for different time-history windows are shown in Fig. 9.
The bin width of the histograms was determined using the normal reference rule (or Scott’s rule) [18,19],
optimized for the Gaussian distribution as

h ¼ 3:5SX N�1=3, (6)

where h is the bin width (or smoothing factor), Sx is the sample standard deviation of a statistic of interest X,
and N is the sample size. The probability density functions (pdf) of C̄01 were estimated with the Gaussian
distribution assumption and are shown in Fig. 9. In the figure, the mean of the distributions decrease in time,
while the standard deviations of the distributions remain approximately constant. The pseudo-constant
deviation is the justification as to why the noise amplitudes were fixed at 5% rms with respect to the
measurement states among the windows (Section 4.1). After obtaining the distributions of identified
coefficients, one can achieve the three objectives of this study that were discussed in Section 1.2. First, with the
mean of the distribution, one can accurately check if the damper has had a genuine system change. Second,
one can interpret the physical meaning of the detected changes. In Sections 3.2 and 4.2, it was shown that the
actual changes in Damper C are due to the degradation of the damping efficiency rather than stiffness
efficiency. Third, with the standard deviations of the distributions determined, one can quantify the
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uncertainty of the detected changes. Using the Restoring Force Method identification procedure, these
objectives can be achieved without knowing the underlying physical characteristics of the identified system.

Using the extracted coefficient distributions, the statistical Hypothesis Test was performed to detect
the changes in the distribution means. This test can be performed with the test statistics of two-tailed
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T-distribution [20,21]:

H0 : ðm1 � m2Þ ¼ 0; z ¼
ȳ1 � ȳ2

sðȳ1�ȳ2Þ

�
ȳ1 � ȳ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21
n1
þ

s22
n2

s , (7)

where H0 is the null-hypothesis, ȳ1 and ȳ2 are the identified Chebyshev coefficients for two different
identification windows, m1 and m2 are the means of the coefficient distributions from two identification
windows, s1 and s2 are the standard deviations of the coefficient distributions from two identification
windows, and s1 and s2 the sample standard deviations of the coefficient distributions from two identifica-
tion windows. In the Hypothesis Tests, the change of the distribution mean was observed with all windows
(Windows 1–8) with a 95% confidence level.

5. Bootstrap estimation of identification uncertainty

The uncertainty quantification usually requires many data sets—in Section 4, 3000 data sets were used to
measure the identification uncertainty. However, collecting sufficient data sets of large-scale viscous dampers
for reliable statistical estimation is very difficult and expensive. Statistical data recycling techniques have been
applied successfully in many fields of engineering and science for the error generalization of identification
results using insufficient data sets. In this section, the Bootstrap method is used to measure the uncertainty of
the damper change detection with a single data set. The Bootstrap estimates of the identification uncertainty
with a single data set will be compared with the uncertainty estimates with the multiple data sets discussed in
Section 4.

5.1. Overview of the Bootstrap method

The Bootstrap method is a statistical data recycling technique for the uncertainty estimation of any kind of
identification parameters. This method is commonly used where the estimation of parameter uncertainty is
needed, but an insufficient amount of data is available for a statistically reliable uncertainty quantification.
Excellent introductory literature on the Bootstrap method can be found in the work of Efron [22], Efron and
Tibshirani [23], Davison and Hinkley [24], and Martinez and Martinez [25].

The Bootstrap method starts with a very simple assumption. An arbitrary parameter (y) identified using an
independently and identically distributed (i.i.d) random data set, y ¼ ðy1; y2; . . . ; ynÞ

T with the underlying true
distribution (F) can be modeled as

y ¼ tðF Þ, (8)

where tð�Þ is a nonlinear function of F. Without knowing F, the uncertainty of y is commonly determined with
multiple data sets, fy1; y2; . . . ; yMg, drawn from the same distribution F as

sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
i¼1

ðyi �myÞ
2

vuut , (9)

where sy is the sample standard deviation of y, my is the sample mean of y, M is the number of multiple tests,
and yi is the parameter identified in the ith test.

Instead of performing multiple tests for the uncertainty quantification, the Bootstrap method recycles a
single data set, y with the empirical distribution (F̂ ). The data recycling is performed with the random selection
of a sample (yk, where 1pkpn) from y for n times with replacement. With replacement, the probability of each
sample to be selected is 1=n. Performing these procedures B times, one can obtain multiple Bootstrap
replicates, fy�1; y

�
2; . . . ; y

�
Bg. The Bootstrap estimate of the parameter uncertainty is determined as

s�y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB

i¼1

ðy�i �m�yÞ
2

vuut , (10)
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where s�y is the Bootstrap standard error of y, y�i is the parameter identified in the ith Bootstrap replicate of the
data set, B is the number of the Bootstrap replicates, and m�y is the Bootstrap estimate of y defined as

m�y ¼
1

B

XB

i¼1

y�i . (11)

In order that sy � s�y, the empirical distribution F̂ should be close to the true distribution F. Therefore, the
following two conditions should be satisfied for the Bootstrap estimation of the standard error:
1.
 The random data y are i:i:d.

2.
 The empirical distribution F̂ is close to the true distribution F.
In the context of the damper identification problem under discussion, however, since the noisy measurement
states ( €x; f ) for Damper A and (x; f ) for Dampers B and C are time-correlated (i.e., the data are not i:i:d), the
standard Bootstrap method described above needs to be modified to deal with the time-dependency. Many
modified algorithms have been developed and introduced: model-based resampling [26,27], block resampling
[28–30], phase scrambling [31,32], and periodogram resampling [24]. Detailed descriptions of each of these
methods can be found in Davison and Hinkley [24], and Hardle et al. [33]. Among these methods, one of the
most widely used method is the model-based resampling, because of its simple procedure and good theoretical
behavior when the time-series model is correct. Consequently, in this study, the model-based resampling
method was employed for the uncertainty estimation of the time-dependent data. In Section 5.2, a detailed
Bootstrap-resampling procedure is proposed and described in detail for the cases that the displacement and
force were measured (Damper A), and that the acceleration and force were measured (Dampers B and C).

5.2. Bootstrap resampling of noisy response data

Single data sets of Dampers A–C were recycled with the Bootstrap method using the following procedures:

5.2.1. Approach when displacement is measured

A single data set of noisy (5% rms) displacement (x) and force (f) for Dampers B and C was resampled with
the Bootstrap method as follows:
1.
 The same data processing procedures for Dampers B and C in Section 2.2 were performed to obtain the
triplet ðx; _x; f Þ.
2.
 The Restoring Force Method identification was performed with the noisy ðx; _x; f Þ. The identification
residual (e) was obtained as e ¼ f � f̂ , where f̂ is the identified force using the Restoring Force Method.
3.
 The auto-regression (AR) was performed for the time histories of x and e. The corresponding AR estimate
of x is x̂. The AR orders were determined so as to satisfy the conditions that ex and ee become i.i.d, where ex

is the AR residual of x, and ee is the AR residual of e. The detailed procedure for determining the optimal
AR orders for the ex and ee is described later in this section.
4.
 The Bootstrap resampling was performed with the ex and ee to obtain the Bootstrap replicates of the ex and
ee (e�x and e�e , respectively).
5.
 The Bootstrap replicates of the displacement (x�) and force (f �) were obtained with the sample
reconstruction as x� ¼ x̂þ e�x and f � ¼ f̂ þ êþ e�e .
6.
 The Bootstrap version of the velocity ( _x�) was obtained through the differentiation of x�. In this procedure,
the same filter and time-history window as those discussed in Section 2.2 were applied.

A total of 3000 Bootstrap replicates ðx�; _x�; f �Þ were obtained. The Bootstrap-resampling procedures for
Dampers B and C are also illustrated schematically in Fig. 10.

A sample comparison of the original and Bootstrap-resampled data is shown in Fig. 11. The Bootstrap-
resampled data show slightly larger dispersion than the original data in the phase plots. The Restoring Force
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Method identification was performed with the 3000 Bootstrap replicates, and the corresponding Restoring
Force Method coefficients were identified. The Bootstrap standard errors of 3000 identified coefficient sets
were estimated using Eq. (10), and compared to the standard deviations of multiple tests. Table 5 shows a
comparison of the error estimations of the Restoring Force Method identified coefficients with multiple tests.
In the table, the error estimates with the Bootstrap method are larger than those with multiple tests: 7–42% for
Damper B and �0:2253% for Damper C. Hence, it can be seen that the Bootstrap estimation of the
identification error is more conservative than the results obtained through estimation with multiple tests. In
addition, the results indicate that the Bootstrap method is applicable to the time-varying system (Damper C),
as well as the time-invariant system (Damper B).

5.2.2. Approach when acceleration is measured

Using a single data set of noisy (5% rms) measurements of the acceleration ( €x) and force (f) for Damper A,
the Bootstrap method was applied as follows:
1.
 The same data processing procedures for Damper A in Section 2.2 were performed to obtain the triplet
ðx; _x; f Þ.
2.
 The Restoring Force Method identification was performed with the noisy ðx; _x; f Þ. The identification
residual (e) was obtained as e ¼ f � f̂ , where f̂ is the identified force using the Restoring Force Method.
3.
 The AR was performed for the time histories of €x and e. The AR estimate of €x is €̂x. The AR orders of €̂x and
ê were determined so as to satisfy the conditions that e €x and er become i.i.d, where e €x is the AR residual of €x,
and ee is the AR residual of e. The detailed procedure for determining the optimal AR orders is described
below.
4.
 The Bootstrap resampling was performed with e €x and ee to obtain the Bootstrap replicates of e €x and ee (e�€x
and e�e , respectively).
5.
 The Bootstrap replicates of the acceleration ( €x�) and force (f �) were obtained with the sample
reconstruction as €x� ¼ €̂xþ e�€x and f � ¼ f̂ þ êþ e�e .
6.
 The €x� was integrated and then double-integrated for the Bootstrap version of the velocity ( _x�) and
displacement (x�), respectively. The same filter and time-history window were applied to _x� and x� as
described in Section 2.2.

A total of 3000 Bootstrap replicates ðx�; _x�; f �Þ were generated. The Bootstrap-resampling procedures for
Damper A are also illustrated in Fig. 12.

A sample comparison between the original and Bootstrap-resampled data for Damper A is shown in
Fig. 11(a). Unlike Dampers B and C, the range of the Bootstrap-resampled displacement is approximately
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Fig. 11. A comparison of the original and Bootstrap-resampled data for Dampers A, B and C. The upper half of the figure displays

displacement–force plots, while the lower half shows the velocity–force plots.
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Table 5

Bootstrap estimations of standard errors for the coefficients identified using the Restoring Force Method.

Type Damper A Damper B Damper C

Multiple Bootstrap Ratio Multiple Bootstrap Ratio Multiple Bootstrap Ratio

C̄10 0.19 0.32 1.68 14.26 17.35 1.22 32.17 42.14 1.31

C̄01 0.16 0.31 1.94 8.60 12.22 1.42 17.17 26.21 1.53

C̄30 0.14 0.32 2.29 14.09 18.63 1.32 28.40 37.81 1.33

C̄03 0.10 0.20 2.00 9.14 12.49 1.37 20.71 27.47 1.33

ā10 0.69 1.44 2.09 115.28 149.10 1.29 245.46 311.77 1.27

ā01 0.74 1.64 2.22 86.03 104.55 1.22 198.68 235.09 1.18

ā30 2.32 4.76 2.05 360.35 474.97 1.32 786.05 983.70 1.25

ā03 2.26 5.67 2.48 322.88 395.84 1.23 669.23 823.17 1.23

a10 6.27E�2 7.13E�2 1.14 2.09 2.67 1.28 7.85 11.60 1.48

a01 5.56E�3 1.01E�2 1.82 0.90 1.06 1.18 3.63 4.58 1.26

a30 2.36E�3 7.03E�4 0.30 2.12E�3 2.71E�3 1.28 4.24E�2 5.14E�2 1.21

a03 6.69E�7 1.30E�6 1.94 4.35E�4 4.66E�4 1.07 8.32E�3 8.13E�3 0.98

NMSE (%) 7.90E�3 2.05E�2 2.59 2.54E�2 3.02E�2 1.19 2.98E�2 2.98E�2 1.00

The Bootstrap estimates are compared with the standard deviations through the multiple tests shown in Table 4. The sample size is 3000

for both the Bootstrap and multiple test estimates.

Single and double
Integrations

for velocity and displacement

DSP
detrending, filtering, etc.

RFM
non-parametric identification

Auto Regression
for time histories

Bootstrapping
for residuals

Sample 
Reconstruction

Single and double
Integrations

for velocity and displacement

DSP
detrending, filtering, etc.

Fig. 12. Bootstrap-resampling procedures for Damper A with measured acceleration ( €x) and force (r).
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twice larger than that of the original displacement in the displacement–force plot, while the velocity–force
plots of two data sets are almost identical.

5.2.3. Issues involving the AR procedure

The above results indicate that using the measured acceleration, the Bootstrapping for the velocity through
single-integration was successful, but the Bootstrapping for the displacement through double-integration
failed. In the model-based Bootstrap method, the resampling results are largely dependent on the performance
of the AR identification. The AR is performed to remove the trends of the time-series data, and with successful
AR, the corresponding AR residuals (e €x and ee for Damper A, and ex and ee for Dampers B and C) become
i:i:d. Fig. 13 shows the significance of the time-correlation for different AR orders. The significance of the
time-correlation is commonly measured with the correlation coefficient (r) in a lag plot. Here, the lag is
defined as a fixed time distance. For example, for the vector ee ¼ fee1 ; ee2 ; . . . ; een

g for Damper B, the ee2 and ee5

have a lag with order three. Hence, in the lag plot (usually with order one), which has the x-axis of eei
and the
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Fig. 13. Measured first-order time-correlations for different auto-regression (AR) orders. (a) The AR residual of the identified restoring

force (ee). (b) The displacement (ex). The time-correlations were measured with the correlation coefficients of the order-one lags for ee and

ex. The definition of the order-one lags is explained in the text.
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y-axis of eei�1
(i ¼ 2; 3; . . . ; n), the correlation coefficient rðeei

; eei�1
Þ measures the serial correlations of the ee

in time. In Fig. 13(a), the rðeei
; eei�1
Þ asymptotically approaches to zero as the AR order increases. However,

Fig. 13(b) illustrates that the rðexi
; exi�1
Þ approaches to zero as the AR order approaches from 1 to 40. Then,

the rðexi
; exi�1
Þ increases as the AR order increases more than 40. This result indicates that the AR for the

identification residual (e) becomes overfitted when the AR order is greater than 40. Consequently, the AR
order of 40 was used in the Bootstrap resampling for Damper B. The same procedure of determining the
optimal AR order was applied for Dampers A and C.

Although the serial correlations in time were carefully removed with the optimal AR orders, however,
perfect removal of the time correlations is almost impossible. Consequently, a slight amount of time-
correlation will affect the results of differentiation or integration. In this study, the results indicate that the
unremoved trend does not significantly affect to the results of the single differentiation (x� ! _x�) and
integration ( €x� ! _x�). However, the unremoved trend significantly influences the results of the second
integration ( _x� ! x�) as the example of Damper A. Consequently, the Bootstrapping for the displacement
becomes unsuccessful. Therefore, in the application of the Bootstrap method to noisy measurements, it is
recommended that the force as well as the displacement of the damper be directly measured.

6. Summary and conclusion

Experimental and analytical studies were conducted to develop probabilistic change detection methodology
for in situ monitoring of nonlinear viscous dampers with measurement uncertainty. A unique data set was
assembled from a collection of carefully conducted experimental studies of heavily instrumented,
full-scale, nonlinear viscous dampers, spanning a broad range of sizes that are commonly used in civil
infrastructure applications. Due to their inherent power in dealing with complex nonlinear phenomena, such
as those encountered at various scales in the investigated nonlinear dampers, model-free identification
techniques utilizing non-parametric system identification approaches were used to analyze the available
measurements.

It was found that the coefficients identified using the Restoring Force Method can be used as excellent
indicators (or features) (1) to detect the changes of nonlinear systems, (2) to interpret the physical meaning of
the detected changes, and (3) to quantify the uncertainty of the detected system changes.

The Bootstrap method was also investigated for uncertainty quantification of the detected changes when the
measurement data are insufficient for reliable statistical inference. Using the Bootstrap method, the
uncertainty of the identification was estimated reasonably accurately, even with a single data set, when the
displacement and force were measured.
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